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ABSTRACT

Tandem-mirror. trapped-particle modes are studied in a model system
consisting of two connected square wells representing the solenoid and
the end cells. Collisions are described by a Lorentz operator. A
dispersion relation that 1is valid for arbitrary v/w (w = wave
frequency, v = collision frequency) is derived. Four 1limits are
investigated. When € = VR, /uw <K 1 + py/p,, where R, is the mirror
ratlo separating electrons trapped in the anchor from those passing to
the solenoid and p, and p; are the fractions of passing electrons and
ions, then collisions destabilize a trapped particle mode that is
stable in the collisionless limit; the growth rate is proportional to
el/2 gor ¢ <1 and e/fn € for 1 + py/py >> € >> 1. When e >> 1 +
pi/pe, the trapped particie mode becomes a weakly growing drift wave
with growth rate proportional to elan € for v/w << 1 and v7! for v/u
>> 1; additionally identified are two flute modes, omne of which is

unstable for some parameters, and a strongly damped high-frequency

mode.



I. INTRODUCTION

The requirement that tandem mirrors be atable to collisionless
trapped particle modesl.sets a lower bound on the mmber of passing
particles needed to connect regions of good and bad curvature. This
requirement significantly impacts the choice of operating scenario and
plasma parameters for tandem mirrors with axisymmetric throttles{ such
as TARA, MFTF-B, and the MARS reactor design. In present-day
experiments (TMX-U, TARA, Phaedrus, GAMA-10) the electron collision
frequency 1is comparable with predicted trapped—-particle mode
frequencies; thus collisional effects are strong in such machines and
must be understood in ordet to diagnose the trapped particle mode.

Collisions have been considered previously by Lanez, who used a
Lorentz (pitch-angle scatfering) collision operator to derive results
valid for very weaﬁ (e << 1) and strong (v/w >> 1) collisionality in
the absence of any axial variation of the equilibrium electrostatic
potential ¢®. The present paper is the seéond in a series of three
intended to more thoroughly treat collisions. In the first3, a
dispersion relation was derived using a general (unspecified) collision
operator, and retaining variation 1in ¢,. in the 1limit of large
collisionality. The present paper restricts attention to Lorentz
collisions and treats the magnetic field.as coupled Qquare wells, but
derives a dispersion relation for arbitrary collisionality and
arbitrary ratio of well lengths, again retaining effects of variation
in ¢. Because of the neglect of energy scatter, the results are of
physical significance only at low collisionality or when there is no

significant variation in ¢. The third paperk addresses this problem by
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considering the full collision operator, but attention is restricted to
the case where the good curvature (anchor) region, or more precisely
the region 1in which the fluctuating potential wvaries from 1its
centrdal-cell wvalue, is sl}ort c'ompafed to the overall machine length.
In all three papers, the effect of ¢ variations on veloc:l.ty—space-
boundaries and the transformation of velocities from one axial region
to another are retained. Effects arising through the axial wvariation
of drift frequencies are mneglected in this paper but are retained in
Ref. 3. The latter can have an important effect on these modes, and
will be included in the general collisionality analysis in the future.
The present paper 1is orgaﬁinzed as follows. Section II presents
the physical model and the kinetic equation governing .trapped and
passing groups of a collisional species (nominally, electronms). In
Section III, the perturbed distribution function and perturbed demsity
are determined for arbitr.ary collisionality, in terms of Legendre
functions. A formal expression for the dispersion relation at
arbitrary collisionality is given. The Legenare functions reduce to
elementary functions 1in three collis:lonal:lty. limits, and these are
discussed in Sections IV-VI. 1In the low collisionality regime (¢ <K
1), collisions produce small shifts in the collisionless mode
frequencies. In particular; collisions destabilize one of two
collisionless modes in the case whc:are there are sufficient passing
particles to render the collisionless modes stable; the growth rate
varies as 51/2. This 1s developed in Sec. IV. In Sec. V, the
intermediate regime (Ram-; < v/w << 1), the Legendre functions reduce
to the small-argument limits of Bessel functions. Two sub-orderings

are obtained in which the collisional perturbation to the fluctuating
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charge density is small or large compared to the collisionless value
according to whether e€/4n € is smaller or larger t'han 1 + Pj_/Pe. In
the former «case collisions are again .a perturbation ‘on the
collisionless results, but the residual growth rate for the stable
collisionless trapped particle mode is now proportional to e€/fn €. In
the latter case the modes are significantly altered by collisions. We
identify four roots to the dispersion relation: a weakly unstable
electron drift wave with growth rate proportional to el Ln €, two
flute modes of which, for some parameters, one may be unst_able (with
growth rate proportional. to el gn £), am_'l a high-frequency damped
mode. The latter set of modes pers-ists into the high collisionality
regime (v/w >> 1, Section VI), except that the scaling of the gr.owth

rates no longer involves the logarithm. A discussion of the results is

given in Section VII.

II. THE MODEL

In this paper we wish to allow for an arbitrary ratio of the wave
frequency, w, to the electron coll:lsio_n frequency, v, while retaining
only those elements of the tandem mirror geometry that are essential to
the study of trapped particle modes. Hence, we model the tandem mirror
as a sequence of connected square wells. The center cell has a length
L., magnetic field Bc,.'. and an average curvature described by the
curvature drift frequenc;.y Wpee At each end of the center cell there is

an anchor cell of length Lalz, magnetic field B,, and an averaged

curvature drift frequency @na* The equilibrium electrostatic potential
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in the center cell is taken to be zero, while the potential in the
anchor cell is ¢,. The mirror ratio of the magnetic mirror separating
the center and anchor cells is R.;, while the -potential barrier
separating these cells is | The plasma densities in the center and
anchor cells are n, and na.resﬁectively.

.Electron collisions affect trapped particle modes because they
- allow scattering between the trapped ;nd passing regions of phase
space. In the large mirror ratio limit, Rtm1/2'>> le¢ ., /TI, it 1is
reasonable to ignore energy diffusion and drag, and model collisions
with a Lorentz collsion operator. This large mirror ratio limit 1is
appropriate in analyzing the throttle—-coll operating senarios of TMX-U5
and MFTF-Bs, where trapped particle modes are potentially most
dangerious due to the small fraction of passing particles. Using this
approximation, the pitch-angle dependence of the non-adiabatic
perturbation in tﬂe .distfibu;ion function of electrons trapped in

region j (j=c,a), hj' 18 described by a bounce-averaged kinetic

equation,

9 9
i\’j EJG (I-Ajz) -u—j- hj "(m-ij)hj = (m-m*e)¢ij ’ (1)

where ¢j=-|e|;j/Te, ;j’ ﬁj, and Aj are the perturbed potential,
collision frequency,- and cosine of the pitch angle 1in ce11_ hH
m*esn*ol1+ne(mev2/2Te-3/2)] is the -diamagnetic drift frequency, 034=
-(%cTy)/(leIn)an/3¥, £ is the azimuthal mode number, T, is the electron
temperature (which 1s assumed to be the same function of ¥ in the

center and anchor cells), neE(n/Te)(aTE/QT)/(anla?), and F, is the zero
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order distribution function of the electroms, which is assumed to be

locally Maxwellian.

The passing electrons suffer collisions in both the center cell
and the anchor cell. Hence, the bounce averaged kinetic equation for

the passing electrons 1is
C(h,) = (umup)hy = (uweg) ¢ Fys (2)

where barred quantities are bounce averaged c_'!ver the passing particle

orbits,

;D - '.rl—b (Teope + Ta¥pa) » ®)

; - T[lb' (Tc¢c + Ta¢a)’ ) . | ' -. (4)
and

C(ny) = ;1; [1eCc(hy) + T,Co ()] (5)

Ty 1s the time to traverse the tandem mirror, Ty = T, + Tg, and 1, and

T, are the times to traverse the center cell and both anchor cells,

respectively, Ty = levjxj . Cj(h) is the first term on. the left hand

side of Eq. (1).

We choose to describe the passing particle distribution in center

cell co-ordinates. We note that



(1-,2) = o(122) | - | )

where € = 1/21|nr(._2 and 0 = sRca/(e-qQa) with Reg = B,/B.; and thus that

Ca(hp) can be written as

PR Ag 2 ah.p

where A ().) is given by Eq." (6). " The .avéragéd operator c takes on a
particularly simple form ( Legendre operator) in either of two ljmits: :

(1) ?‘ca -1, ¢, =0, 1in which case A, = A, for arbitrary R.,, and (2)

R,y >> 1 so that, for passing particles, Ag,A. = 1 '+'0(Rém"1).' In

either case, we find
- gm0 3 2 9
c(h,) = 19 Er (1=2%) e hy » (8)

where

(9

Vs (Vc'tc + va-ra/o)/-tb

and henceforth T4 = Lj/vj. .

III.. PERTURBED RESPONSE AND DISPERSION _REL:A_'IION" FOR ARBITRARY v/w

Comparing Eqs. (1), (2), and (8) we see that, in the large mirror

ratio limit, each group of particles in the tandem mirror obeys an
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equation of the form of Eq. (1) where ] can now take on the value p
(for passing pariclesj. The bounce averaged .drift frequency,
potential, and collision frequency for the passing particles are given
by Eqs. (3), (4), and (9). If we neglect.the A dependence of Wp 40 Eq.
(1) 1s an inhomogeneous Legendre’s equation of order zero. The general
solution to this equat:lo.n 1s the sum of a pa-rticular solution to the
inhomogeneous equation together with a solution to the homogeneous
equation chosen to satisify the boundary conditions in each region. A

particular solution to the inhomogeneous equation that is independent

of A is

D% | ' | (10)

The solutions to the homogeneous equation are the Legendre

functions PY (A;) and (A;), vhere a; 1s a root of the quadratic
“j h 3 h | J

equation

“™nj | : (1
\’j .

The boundary condition on the trapped particles is that dh/dA J=0
at A j-o, while for passing particles hP(A) must be_qon-sihgular at A=l,
Hence, a homogeneous solution for particles tr'apped__ in the center or

anchor cells that satisfies the boundary condition at A=0 is
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hy(hg) = ng(xj) - %cot(%aj)ng(Aj) , (12)

while fhe homogeneous solution in the passing particle region of phase

space 1is
By(A) = pgp(xc> . (13)

It is helpful to introduce a normalized solution,-ﬁ, given by

. By (g
hy(ay) = 23, (14)
By (Agq)

where *js is the value that lj takes on the separatrix in region j. We
adopt the convention that Aps = A.g+ The non-adiabatic part of the

perturbed distribution function in region j may then be written as

It remains to evaluate the constants A,, A,, and Ap. This 1is
accomplished by requiring the perturbed distribuﬁion function to be

continuous across the separatrix, which yields

Ay +hi = A +1], (16)

and

A, +h) = A, +h] ; (17)
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and demanding that there be no net flux of particles into the

separatrix, which implies

9h, 9h, _  3h, 0 (18
VT, e+ VT, —— =Vl —— =0,
ced, aawm, b
Equations (16) thru (18) yield
b ? (hO—h0 b ¢ (1010
) hc(hp hl) +o 6 ha(hp hd) . (19
(146)hs ~ by - o & by
Ac.-Ap+hg-hg, (20)
and
Ag = A, +1h0 -nj ; (21)
where
Y = o . (22)
b Ny ’
and
‘L.n.0 '
8= _aa | : _‘ o (23)
L.a.R 2

c'cca
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Note that the particular solution, hg, is also the solution to the

collisionless problem. Hence, we may write the perturbed electron

density in the jth cell as a sum of the collisonless responce, ngj, and

a collisional responce,

A -

1 -~
i [ v lav, GRreplZa, [T B B0 , (24)
' cs

where ch E Bj/Bc, 6, £ 0, and 0, = 1. In deriving (24) we have set
Ag/A. = 1 consistent with the approximations made in deriving Eq. (8).
In some applications (e.g., when the collision frequency is treated as

a small parameter) it is convenient make the replacement

v
~ - j a - 2 a ~
hy=1 way; g (124 ’irj'hj , (258)
IS B IR O

where B} = (1-0,HY/2 B /By (0 ) and

B0y = ¢} {4 - eot(Za4)e} JAp 5 dmesa (26)
Bl = Pép<*c) - (27)

An integral over A then yields

-~ __ 2 "~ Vy oa
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+ 4wi 2d 1/2 \)p nl .
4wl [ votdv, (agR ) %Ay = hh(heg) - (28)
- up

In deriving (25b) we have used the identity L}(A) - ~(1-22)1/2 aL‘_?l/aA
for Legendre functions L = P or Q.

Observing from Eqs. (10), (19) and (24) or (28) that QJ 18 a
linear function of ¢, and ¢,, we can define a collisional
susceptability'tensor iv by the réla;ion (lle)ﬁg = Zx§k¢k where ﬁj =
;‘5 Lj/ Bj is the collisional perturbation in the number of particles per
unit flux in region j, N-fn ds/B 1is the mmber of particles per t_mit
flux in both the center and anchor cells, and b = kchip/mgic;. here

w is the ion cyclotrom frequency in the cem:rai cell, We can now

cic
formally write the dispersion relation for arbitrary collisionality; it

is

X0 +%°1 =0 (29)

where %0 is the collisionless susceptability; it is given explicitly in

Eq. (4l1).

IV. LOW COLLISIONALITY REGIME

The low collision-frequency limit (v /w << Kl < 1)) 1s obtained

from the large-a, finite~0 asymptotic expansions for the Legendre

functions:
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Ph(cos 0) = %—%—% (-1-;- sin e)-llz cos ¥ + 0(a”1) (31a)
e I(atu+l) -1/2 -1¥ ’
= mz—)- (21" sin 0) e (31b)
u _ ¥ na o I'(atu+l) L] -1/2 _yy
Qc(cos e) i cot (T Puc = r—(-m (2—-51—”—) e (32)
where
Y= (a+-;-)6 -t

Eqs. (31b) and (32) are derived assuming that Ima > 4+® as a + =,
Since for our application ay = [1(m-ij)/vj]1/2, Eqs. (31b) and (32)
are valid provided that the appropriate square root is taken. Also,
validity requires 9 >> a-l; thus, at 6 = @ s " R}I}l, the requirement is
Ve/w < Ryp~l/2, which defines the extent of the low-collisionality

regime. From (31) and (32) it follows that

h'l; -1 @5 sin 0, : (34)

h‘; i oy sin Oj s J=c,a (35)

Then from Eqs. (28) and (19)-(21), we find, to leading order in mD/m,

1 (M X X\ [, (36)
bN N:a _xv xv ¢a )

or E:/ (bN) = X¢, where



-lb4=

>
8§

exp(in/4) Py(Ny/R) <(l-wa/w) 2, (v,/6)L/2 K 61n 8,5, (37)

with 2 = 'l'j/'l.',
f. vg F dv,
vo 11 o %Pamy 1/2 | 1/2
P = ———=b [2( ——)  exp(-edg,/T,) + erfe((edg,/T,) " “)] (38)
b 6 vi F dv - e
and

v..1/2 ov,. 1/2
zc(f) +1+ "a(\,—:)

K=

39
vp,1/2 Vg ,1/2 39

(;—) +h, + zﬂ(oT)

I ™ ) '
v,“ dv_, Fx
v 8 a

&> = | (40)

where vy = (ZeOamITe)ll 2, In evaluating mll 2, the branch cut 1s to be
taken on the negative imaginary a.:_:is.- | |

The dispersion relation and mode structure are given by
quasineutrality, i.e., ﬁg - 'Eg - :i_f: =0, or (X0 +%V) ¢ = 0, vhere,
from Eq. (10), it follows that, to leat_lin.g order in "’DJ/“;’ the

fraction of passing particles, and k2 piz, io has the form
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Xca Xaa * Xca

, _ Sagp
xca -E Pj (1 -T)

2
N Rx Y
oo = E (1 - e, e
cc N w w2

“Jagg .

2
n*ia - "‘a)
w 2

Xaa
©

(41)

- 2
with P.‘l (stTe/Nijp)«a'rc/'r >pj’ ij is the mumber of particles of

species j on a flux tube, < >pJ is the phase-space average over passing

particles:

/ %, (Leae + Lyay(0/Ree) 1/2) By

a

] adv, (1 + Lo/ ) /?) ¥,

the averaged diamagnetic drift frequencies are defined by n,jr -

-(Ec/anTjr) anr/a! for r = c,a and

2
zc'rjp aajp <cjp'rarc/-r ’j

Rp = -
Jp qffy, ¥ <TaTc/Tz>jp

2
v 3

r
er - 1 + njr(—ZTJr - -i')



e = d £n Tjr/d fn o4y »

£ is the azimuthal mode number, Pyr is the pressure of species j in
cell r, Y is the magnetic flux, ﬁjp 18 the full density associated with
the Maxwellian distribution function describing the passing particles

2 and uz

c g are the squares of the MAD frequencies in the '

of species j, ~-Y

cntral cell and anchor,

ch
T

by ? = § Sx3eCycinge’y . T

Tiya
buaz = ; 9*18«.18"'1).18)1, _,j:j:. .

sums on ] run over electron and ion species, and < >jr denotes the
F-weighted average over the trapped portion of velocity space for
species j in cell r (r = c,a). Note that the {‘s can be replaced by

one if ¢, = &, =0 and R,, = 1; otherwise, there 1s extra charge

c
uncovering associated with the temperature gradiemt. It 18 assumed
that the ion distribution functions in al.l regions of phase space
(trapped in solenoid, trapped in anchor, passing) are Maxwelliam, but
generally with different densities and temperatures.

The dispersion relation is given by (X0 + X’| = 0; since [X°] = 0,

this can be written in the form

0 +pV =0 . (42)

where
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p0 - XaaXce * XcalXee T Xaa) (43)

and

DY = X"(xee * Xaa) o (44)

Estimating n*jr ~ Qxq, we see ‘that the components of X’ are smaller
than those of X0 and thus DV is smaller than DO by order gl/2 P./(B, +
Py + 1), vhere e = (va Ramln*). Thus DY can be treated as a
perturbation. Then the shift in frequency 6w from the collisionless

result w, (where w satisfies D0 = 0) is given by

\Y

=D
" [1 + 0(e)] . )
dw

Sw 2

From the mode equation (X° + XV) ¢ = 0, the dispersion relation (42),

and the form of X0, %’ it follqﬁs that

$a | _ Xee : (46)
b Xaa

In the collisonless 1limit, the dispersioﬁ relation 1is usualiy
obtained!? assuming that ¢, = 0 and thus solving the condition .. Xca
= 0 for quasineutrality in the central cell. 1Imspection of Egqs. (41)
and (46) shows that this assumption is justified 1if ma?/mz is much
greater than 1 and the Pj.. Thié limit obtains:in a machine which 1is

strongly MHD-stable, w2 >> £.y%/%,. In this limit, wy = (24)71 [-RugB
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t (uB2-4m2)1/2], with A = (N/N) + IBy,, QugB = ~(N/Nlwy, +

ZPjn*jp » and

W :
bw = -~ 3 = (47a)
T Xeet Xea) '

wollzexp(i'nM) PO(N.CIN)Q.a(l - ;::-)\_a;/zl( sin 6,5,
0 (47b)

By
Yo

2A +

If the collisionless mode is stabilized by charge uncovering or
finite gyroradius effects so that 9*0232 b 4A7c2, and B > 0, then the
two collisionless modes are characterized by lmoln*ol > I1B/2A| and 0 <
lwg/2ql < 1B/2Al, respectively, with sign(mqln*o) ‘= -gign(B). The
latter mode is destabilized by collisions (Im éw > 0), with Im(sw)/Qyug
~ el/ ZnecB'3/ z(ch/bn*o)I/ 2, The higher frequency mode is damped, with
Im 6w/9*0 ~ . EI/ZPe/(Pe +#y + 1). 1If the collisionless mode 18

unstable, then collisions add real and imaginary increments of order €

to w.

If w2 1is not so large that xo dominates, then the collisionless

mode is not localized in the solenoid; w, can only be found as a root
of a quartic, and the sign of Im(Sw) is best establishéd numerically.

The results obtained here can also be derived d:l.rect:iy from a

boundary layer analysis, such as has been dome by LaneZ.
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V. INTERMEDIATE COLLISONALITY REGIME

The intermediate collision frequency regime R << v/w €€ 1 1s

analyzed by using the amall-angle limits of the Legendre functions.

From Ref. 7 we havé

Pl(cos 8) = BHI_ (a) [1 + 0(8™)] ' ) (48)

where B = (a + 1/2) cos 6/2, a = (2a + 1) 8in 6/2, and r = 2 fora ~ 1

or y € 0, but r = 2-2u for a - 1 ~ 1 and y > 0. The latter fact
restricts applicability of (48). We shall in fact use (48) only for u

g 0. Using the Legendre-function identity

n exp(iym) (Pi(2) - I (Vi) M (2))

H -
Qu(z) u sin un T(v=u+l)

and (48), and taking the limit u + 0, we find

Quleos 8) = T¥o(a) + Jpla)[n B - $(vH)] (49)

where ¢ 18 the digamm# function. Using the identity L&(cos 8) =31, /a0

for L = P,Q, we find the remaining needed expansions,

pl(cos 8) = -J;(a)[1 + 0(82)] (50)
% = 28Y;(a) - 8J(a)[4n B - ¥(a+1)] (51)

Thus we obtain



hl(e) = -B 8 J1(a)/Jp(a,) ' (52)
n, w TQ
- =Y; - Ji(%n b - ¢ + = cot —
1 = o 1 1
hr(a) = = Belyg : : *i » I=C,a (53)

where J, = J,(ap), Y, = Y (ay), ¥ = vlagH), o, = a(By,) = (ap +1/2)

o = B(By,) = (b, + 1/2), and we recall that 6., = R;nlllz. The

rs?’ Br -

intermediate and high collision frequency regimes are characterized by

the 1inequality ay << el in which case the Bessel functions can be

rs?’

approximated by their small—arghment, asymptotic forms. Then

hl(8.g) 2 =[(a, + 1/2)8,41%/2 (54

ﬁi(ecs) [2n 8 +Y Y + (n/2) col:(_-lmr..l.lz)]'1 s I=C,a (55)

where Y is Euler’s constant .5772+++, Note that when a <1 the right
hand side of (54) 1s zero to the accuracy of our approximation.
The intermediate-collisionality regime is obtained by taking the a

= (:tm/\))u2 >> 1 1limit of Eqs. (54)-(55), in which case

ﬁi(ers) g 1/%0(a0,.¢) r=c;a | | (56)

where k = -1eY/2. 1In the opposite limit, o = fw/v << 1, we obtain

fl ~ - -
b (8pg) = [“r1 +4n 8,,] 1

which reproduces the amall 6, (large er) limit of the

high—collisionalitf results derived in Sec. VI. Furthermore, use of
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the large argument limits fm_: the Bessel func.tions reproduces the
small—es (large-Rcm) limits of the low-collisonality results obtained
in Sec. . 1IV.

Using Eqs. (54), (55), (28) and (19)-(21), one finds the
collisonal density perturbation to be given by .Eq. (36), but with the
susceptibility coefficients given, to 1lowest order in md/m and e—l
_ (gote that €, defined following Eq. (5.12); is now a large parameter),
by |

: _ : (57)
xv = (1 - 'C2 ﬂ*olu)cl(ﬂ*olu) '

vith ¢ =  ~1Pg(N,/Magd<wghl bl /(hl + 8hl)>p, and ¢ =
~1Pg (N, /My )<V, 8 ogh! gl o/ (BL + 6B1)>,.

. The dispersion relation is again given by (42)-(44). We note
that, for R(':i << v/w << 1 (which 1s henceforth assumed) we have ¢y =
1P0(N8/N)<vacln*o>o,_ with C = -[ln(aaeask') + 8 R.n(acecslc)]"l (and
similarly for cz)-, so that D"/D0 ~ (e/&n €) [Pey(Pe + Py + 1)}. Thus
theré' are two cases to cons:l.de_r: Do > pY, v;zhich applies when 1ion
overshoot or the finite gyroradius (FLR) term b 1s larger than electron
6vershoot and € is not too big, .and '_D" > 'f)o, which appl.iea when
electron overshoot _ddminatgs or for very 1a1.:3e €.

" In the former case the modes are as 1in the weak collisionality
regime but with modified growth rates, given by using (57) instead of
(37) - (38) in (44) and (45). In the strongly-MHD-stable (large-u,)

limit considered in Sec. 1V, this becomes:
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_ 9*0 [1 - Czﬂ*olmo] cl

Sw =
@ 2A + Bn*ollllo

which, for the higher (lower) frequency mode considered following Eq.
(47), is unstable (stable) with Im w ~ n*o(elzn €)[P /(P + Py + nl.

In the other case, where D’ > Do, in lowest order the modes are

given by the roots of p¥ = 0,

Rg Rag Quy> o

Dv =cy - (1 - CZT)(I - 5 . wz ) (58)

where

N<n“’1> = I'](:n!'tic + Nan*ia ’

2 - 2 2
Nwyyp?> = ~NoYe + Nawg
and more generally
N<x> = Nox, + Nax, .

The solutions of (58) are a high-frequency mode w >> Q4;, an electron
drift wave w = c,Qy,, and two flute [p/6, = 1 + O(E_lln €)] modes,

which satisfy q.. + q,, = 0, or

2
Qag>  Dagd
wmwg st (e + )2 (59)

Note that <“'}2IHD> is the pressure-weighted MHD drive. Equation (57) 1is
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the. dispersion relation that describes the 1leading-order ion
finite-l.amor-radius'cotre_'cl::lons to MHD flute modesa. The corrections

to the lowest-order ffequehcies are given by perturbation theory,

§ L -
(lM/w) » - —— (60)
aDV/3(1/w) :

. The mode structure. éan then be detem:lne_d from (46). Thus we obtain
the following:

The high-fréquency mode 1is

(NN, /N2) + ]py

w e -

~1ivR,r/inr - o (61)

with r = ZPQIIRma + (RmN/Na)ZPj] .so that &n r < 0. The mode 1s thus

strongly damped. The mode structure is given by

¢ Ne

— - ——— 2.
i W, (62)

The mode thus has a zero n/B-weighted line average, and is thus'
i:ypically strongly peaked iﬁ the anchor.

The electron drift wave has frequency w = Coflyg + Gmed where
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:I.c%ﬂ%oDo(czn*o)
Gwed = ] . (63)
(BgN,/M)<v,Coq (1 D <NMH">)'
¢ a a ° . Cél*o c%‘zz*o

with D%w) given by Eqs. (43) and (41). For the typical case where

Pos Py > Na/N, or for the case of a strongly MHD-stable machine where

<m1?1HD> » 936, (63) simplifies to

. ) T
. Rasp
Sed = <V CopPeN, /N 1 P:I(l'czn*o) +d] (64)

1Qxpin € P, + Py + N./N

€ Pe
where
Ne <Tyc> -Yc2
G = Xee(wmeota) = (1 + ——+—=5) > 0
2'e C%z*o

The mode structure 1is, from (46), ba/d. = G/'xaa(ézn*o) where xag is
given by (41). It 1s seen that the mode 1is localized in the center
cell 1f w2 > (N/N)v2, (N./N)..

For the flute modes (59), we can make use of the relation x,, =

~Xce 1n evaluating D0 in Eq. (60). We thus find w = wg + Swg, where

1
cc (65a)
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: 2
Qi Yo .2
2 2 (1 - =<+ cz
-1Ncmf T wf mf .
- (65b)
RN, v, Coy Rug B>
(1-ergd) (2-5)

We observe that ; flute mode 1is \.mstable. for wg in the interval
between Qu,/2 and coflag a:nd stable (damped) otherwise. Of the two
roots of (57), one has ©/<Bgy> > 1/2 and is always stable. The second
root is unstable for emall <m1?m> but becomes stable for Qulzﬁm> > c% +
c2<T1>/Te.' For example, in the limiting_cas.e where Qnrzm'y 144 9,2,0 and

Qurjg = e :-E Qg - {Rgy”, the two roots for wg are wg = Quy and wg =

<u}2m>/ﬂ*1 , and Swge becomes

5y 2

2 2, .2
. -1 NcMNa (vg +w3) (1 +¢p8)
f-& '- ? Cor;
e®0 ¥p, - ai, i

Sw

2
-ilgln € (yg + ug) Tﬁ

Pe € 93 TZ

* i

and

. . 2
N2, (v2 + w2)
P°ﬁ3<0ac>¢C2T1 9%0

60)f s

. 2
iz§£n € (72 + wﬁ) Ty

Pe € 920 Ty

respectively. The former mode is stable; the latter mode is unstable.
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Another simple limit is obtained when <"’}21HD> >» 921, in which case we =
t((m,zﬂ,m»” 2 and both modes are damped.

We note that in both the low and intermediate collisionality
regimes temperature gradients affect stability quamf.itative.ly but not
qualitatively, through the values of Qugar ﬂ*ic, ﬂ*jp and Cy. This is
in contrast to the high-frequency regime considered in the next

section, where the presence of a temperature gradient alters the order

of magnitude of the growth rate for the electron drift wave.

VI. THE COLLISIONAL LIMIT, v/w >> 1.

In the limit of large collision frequency, v/w >> 1, the perturbed

distribution function mst_satiéify
c(h) = 0 . o ~(66)

If the full, linearized collision ﬁperator were employed, Eq. (66)
would 1imply that h 1s nearly Maxwellian at all energies. VWhen
collisions are modeled by a Lorentz operator, then Eq.. (66) only
implies that h is nearly independent of pitch-angle. If there are
significant varlations. in the equilibrium potentiai between the center
cell and the anchor cell, then the Lorentz collision operator makes a
qualitative error in that the-Lorentz operator will not allow the
perturbed potential in the énter cell to effect the distribution of
electrons that haven’t sufficient energy to escape from the potential

peak in the anchor cell. A collision operator that includes energy
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diffusion and drag as well as pitch angle scattering will allow a
perturbed potential in one cell to effect the distribution of particles
‘that are energetically cogfined to-the ofhef cell. Hence, the Lorentz
model only properly deacribea the collisional 1limit when there are no
significant variations in the equilibrium potential between ;he center
cell and the anchor cell. In this section we restrict ourselves to
this ' case, . and iénore, equilibrium potential variations. The
collisional 1limit {in the - presence of strong potential variations
(ebea/Ta > 1).13_cc;\;nsidered-elsewhere;4

We adopt thé'o;dering w/v, £,55(1-A4g), g/, b = 0(A) << 1. The

index of the Legendre functions, a, 1s then order A, and we may write

PI(A) =1 + 1n(1+*) Foaee y - (67)
@« 1wl v, (68
P(]i.()‘) =,,_“(]_..12)1/2{1+l -a ln[(ir;)/ﬂ + ....} , (69)

QL) ~-<1-n’1/2{1 -a [ 1n(1"‘ ) +Aln (m)] +eee } 3 (70)

where Eqs. (67) an& (68) may be found in Abramowitz and Stegun,9 while
Eqs. (69) and (70) are derived in the Appendix. In each region of -
phase space the index of. the Legendfé functions, ays is given by Eq.
(10).

The collisonal perturbation in fhe distribution function then

satifies
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14

ho(A.) = 1 +a_ln(~0) +0(A2) , (71)
fp(Ae S v,

and
ﬁé(xcs) = ~a (1-3g) + 0(a%) (72)

in the passing region of phase space; while

~ a l-l
hy(xy) = 1 +_21 ln(ﬁ%) + 0(a2) , (73)

and
Rl ) = a [1-&1n(___fpj)] + 0(a3) (74)
3'438) T 23t gel i
in the trapped regions of phase space. The .subscript jJ takes on the

values ¢ and a for center and anchor cell trapped particles

resbectively, while

I % ) _ : '
aj—iv(l —= 15.). | (75)

When a appears without a subscript the dependence on _fhe drift
frequency may be ignored, yielding a = im/v. Note ;hﬁt the equilibrium
plasma density in the center cell and the anchor cell must be equal 1if

the electron distribution is Maxwellian and there are no equilibrium

potential variations. Hence, v, = v..
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Inserting Eqs. (71) thru (74) into (19) we find, after a great

deal of algebra, that

A, = -hd - (1_9‘:0)[(1.-.<‘:D>)<¢> - '021'('1%52"1'” (6o = 9g) ] - (76)

It 1is now straight-foward, though tedious, to calculate the
perturbed electron density in each cell, and hence the susceptibility
tensor describing the collisional electron responce. It 1s convenient
to sun the collisional susceptibility of the electrons together with
the leading order (in our small parameters fp,
collsionless susceptibilities of both electrons and ions to obtain the

wp/w, and b)

leading order susceptibility,

®v _ v 1 -
= . . 77
X =X (_1 1) | an

xv is now given by

Rag 3 Rap, NN
Voo [[1%0; wy_,3 ¥y Yale
X [(x - )(1+1;;J 15 v*] 2 ’ (78)

here

L @2 237, Yol o)™

and Qup = NQxge The remaining piece of X has the same structure as

i(o) of Eq. (41), where x,., X .o, 80d Xz, re given by
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el 2 1)2 1)2
) . “’§H]) ) Tg‘“lsﬂ-ﬂg,aqz"’l(ﬂﬂg,c fix9.1 1
. © + + - L)
ce m tzn*iu 0 T T,
N
T "¢ 2 2 )
Qun  Rgem <> NN Qug
xQ = (1-2- D2 224 (1-21), . (79b)

W ‘o / bw _NZ

N Ne "’L(ﬂillgfa- w(i)z 'rgwl%%za— 1_2“(1)2

Qun -
0) . MHD, ¢ R MHD,c | “*0 1 _ 1

X T | + + —(= - =]
aa N2 w? 'rzn*iu _ m.j-r Ta

+"ti°(2-<s1>-<sz2 S) '(i9)
I W= = 0y MHD?/ . | ¢

where ion quantities are indicated by the sgperscript (1)_,"and we have

allowed for different ion temperatures. in the -cet.n:ei' and anchor cells.
The structure of X' in this sectiou is .the same as that of %' in

Sece. IV and V. The determinant of ')E“ again vanishes. Hence, to

leading order the dispersion relation is giveﬁ by

(W2 = @ugdu -<«»§m>)[(1~—)(1+1—J-3 *T] |

2 NgN. :
- bw (xccxaa + XealXee * xaa)) (80)
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The right hand side of Eq. (80) is small. Hence, at leading order
the dispersion relation may be obtained by setting the left hand side
of Eq. (80) to zero. We find three modes. A mode analagous to the
dissipative trapped electron mode ;I.:\_ toriodal systens,lo which satifies

the dispersion re_lation '

Qapfir. |
S 0 | (81)

together with a pair of modes with frequencies given by Eq. (59).
These three moﬁes ‘are obvious extensions of three of the modes
identified in the DY > DU limit of the intermediate-collisionality
regime (Section V). The fourth root identified in Sec. V, the
high-frequency damped mode, always satisfies v/w < 1 and so doesn’t
appear in the high-collisiohality ana'ly_sis. |

it is interesting to note that the growt_h rate of the electron
drift wave identified ;n .th_e. 1n£ermeciiate-collihonality regime (Eq.
64) différ_s from that of the correaponding high—collisionality mode
(Eq. 81) in that the growth rate for the latter vanishes at leading
order if the tempereature gradient vanishes.

As iﬁ Sec. V, the ].owest order ;lispers:l.on. relation of the two
flute-like modes fi.e.; the modes satisfying Eq. (59)] may be written
symbolically as Xaa = .-xcc. Using this relation in the right hand side

of Eq. (80), the growth rate for these modes may then be written in

the form
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2
b Nale o2 Xee 0 2 Qx0, 3
Y S N, (BT (‘""“*o) [1~~{1450)] (82)

It 1s evident from Eq. (82) that the growth rate can be positive 'only

when the real part of the frequency falls in the -range

gy ' ' .
1M ¢ 9 ¢1+3,, (83)
7 g\ Bag 3 (8

a result similar to that derived in Sec. V. This condition 1s never
satisfied when the sign in froant of the square root 1in Eq. (59) is
chosen to be the same as the sign. of Qyxyd. _'I‘he remaining flute mode

will be unstable when <“’}2£ED> 1ies in the range

W@y >

0< <whpy <0y (1+30) [1+30 -2 . - (84)

In the limit <wlp> << <R4y>? we find that the mode with wg = (Ray> 1s

damped. The damping rate is given by

4 . . :
NaNe “‘tS]:'lIlg,a 12,2 3 :
Y—-b—}-;z—m[m) (1 -l'-_‘r +-2-n) . . (85)

2
when ml(&'ig.a > 9%1; and by

, .
NaNe Dag?” | 41 +3/2 0 | N (86)
N2 Vi 'rz(l + 1')2

Yy=-b



2 (2 )2
when n*i > mm’a ’ mmm’c .
The remaining flute mode has a frequency wg = -<m,2m>/<n*1>, and a

growth rate

(87)

.In the opposite limif, @}zm> » 921, the real frequency of the
two flute modes is given by wg = & <"’}2!HD>1/2 « Both of these modes are
damped. The damping rate 1is

(114
i 2
NaN¢ "'éﬂil)),a Ta
T

N vead o

Y = =b (88)

VII. CONCLUSION

The effects of electron pitch—angle scattering on trapped particle
modes in tandem mirrors have been considered for arbitrary v/w. When ¢
= VR/w 1s small, electron collsional dissipation y:l.elds small,
destabilizing corrections ‘to the collisionless trapped particle modes
considered pr.eviously. At large;: v;liies of € the collisions
substantially alter the dispersion relation. The modes found then
include an electron drift wave, two flﬁte modes and a high-frequency,

nearly-purely damped mode. The most dangereous mode is then the

electron drift wave, with a growth rate y ~ 9*02/\:. It is likely that
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current tandem mirror experiments operate in this collisional regime, €
>» 1. These experiments should observe an unstable spectrum
propagating near the electron diamagentic drift velocity relative to
the E x 3 electric-drift velocity of the plgsma. The growth rate of
these modes increases with the square of the azimuthal mode mmber.
Hence, we may expect short scale length turbulence much 1like that
observed in tokamaks. This turbulence may lead to enhanced radial
transport. [This 1s in contrast to the collisionless, or weakly
collisional theory, which predicts that the most unsatable modes will
propagate in the ion diaﬁagnetic drift direction _(relative to the E x 3
drift) with a growth rate that does not dramatically increase with the
azimuthal mode mumber.] Broadband turbulence with'. frequencies of Ithe
order of wy have been observed oﬁ TMX~U. -

In this paper, ion collisionality has been neglected as the ion
collision frequency is so much smaller than that of the elect:l't.ms. The
ion collisional response can be straightforwardly derived following the
procedures used here for electronms. * Ion collisionality effects do not
become important until the electrons are strc}ngly collisonal; results

for weakly collisional ions and strongly collisional electrons are

given by Lane?.
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APPENDIX: SMALL INDEX EXPANSIONS OF LEGENDRE FUNCTIONS.

We evaluate Legéndre functions at samall 1index, v, by making a
Taylor series. expansion of the Legendre functions, P, and Q,, about

v=0. Hence, we need expressions for

8 Py LI YeRY and dz.rl(x)l .
dv V' juap 7 dv VT jymp dvZ v V=0

The Legendre functions satisify the equatiom

d (;,2y d -
a..l-(l_l)aTL+u(u+1)L ._0, | (A1)

where L= PS’ Qg. Taking the v-derivative of this equation, and

evaluating it at v=0, we find

d 2y d - =

Y (1-2 )?ITL“ L , (A2)
and

d - 2 d - e - -

where the subscript on L indicates the derivative with respect to v.
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Equations (Al) and (A2) may i:e integrated over A to obtain L, and |

A boundary condition at A=0 may be obtained from Abramowitz and

Stegun?, Eqs. (8.6.3) and (8.6.4). We find

d o [~ dl M - L T
@ RO =-ln2, SR -1, q,,(o>|lu_0. —_

9 gl0)] =-In2, and _2."2 PL(0)| = =21n 2 .
duv ju=0 ’ ’ du v lv=0

Integrating Eq. (A2) once, and using the ‘relations

A = <122 2 200 and g0 = <102 L g ,

we find
E,-Pl( )I 0=-%1/2,' | ' (a4)
and
“”{uv - V) )] . W

A further A integration then yields the result

d o - 1+
duP(A)l -0 ln(-—z— > (A6)
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which may also be found in 'A_bramowitz and Stegun [Eq. (8.6.20)].

Finally, we integrate Eq. (A3) once to obtain

42 A 1/2 1
T-x

a RO oA e . (a7)

which is tﬁe final result required.
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